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ABSTRACT

Forecasters often develop rules of thumb for adjusting model guidance. Ideally, before use, these

rules of thumb should be validated through a careful comparison of model forecasts and obser-

vations over a large sample. Practically, such validation studies are difficult to perform because

forecast models are continually being changed, and a hypothesized rule of thumb may only be

applicable to a particular forecast model configuration.

In this paper we demonstrate that when a long data set of forecasts from a “frozen” model is

available, statistical validation of rules of thumb are possible. Further, this validation may not

support the use of a particular rule. We examine one rule that is often applied regardless of the

forecast model, a rule dubbed “dprog/dt”. Forecasters often use the term dprog/dt to discuss

changes in numerical forecasts verifying at the same time. For example, if yesterday’s 48-h tem-

perature forecast was warm and today’s 24-h forecast is cooler, dprog/dt is negative. Some fore-

casters may also think of dprog/dt as a general rule of thumb for how to improve upon the latest

model forecast. Given a set of lagged-average forecasts from the same model all verifying at the

same time, this rule of thumb suggests that if the forecasts show a trend, this trend is more likely

than not to continue and thus provide useful information for correcting the most recent forecast.

Forecasters may also note the amount of continuity of forecasts as a measure of the magnitude

of the error in the most recent forecast.

To examine this rule of thumb, a 23-year record of forecasts were generated from a T62 version

of the medium-range forecast model used at the National Centers for Environmental Prediction.

Forecasts were initialized from reanalysis data, and January-February-March forecasts were ex-

amined for selected locations. The validity of “dprog/dt” was assessed using 850 hPa temper-

ature forecasts. Extrapolation of forecast trends was shown to have little forecast value. Also,

there was only a small amount of information on forecast accuracy from the amount of discrep-
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ancy between short-term lagged-average forecasts.
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1. INTRODUCTION

Numerical weather prediction (NWP) models grow increasingly sophisticated with each

passing year. Unfortunately, the quest for an NWP model free of systematic error remains elu-

sive. Weather forecasters often develop rules of thumb to adjust the guidance produced by NWP

models. Sometimes a rule of thumb may become obvious from a small sample. If, say, Eta model

(Black 1994, Rogers et al. 1994, 1995, Mesinger 1996) forecasts are consistently too cold over

snow every day for a month, a forecaster would certainly be wise to compensate for this bias un-

til the model is improved. Nonetheless, human forecasters are fallible; their rules may appear to

be appropriate from a relatively small sample of recent forecasts, but human judgment can often

be a poor arbiter of statistical significance (see Gilovich 1993 for some interesting examples).

Ideally, a forecaster should validate statistically their rules of thumb with a longer time series

of forecasts. Practically, this takes time and effort, and a statistically robust sample may not be

available, since operational weather prediction centers frequently update their weather forecast

models,

Given these model changes, rules of thumb for adjusting model forecasts that can be applied

regardless of the specific forecast model would be especially valuable. One potentially fruitful

avenue for improving upon the latest numerical guidance is to consider multiple forecasts from

the same model valid at the same time. Such lagged-average forecasts (“LAFs”; Hoffman and

Kalnay 1983, Dalcher et al. 1988) have previously been shown to be useful for improving the

skill of medium-range forecasts. For shorter-range forecasts, an evaluation of trends in lagged-

average forecasts is often referred to informally as “dprog/dt.” Thus, one may see in forecast

discussions that “temperature dprog/dt is negative,” meaning that more recent numerical fore-

casts are colder than older ones. Some forecasters may also view dprog/dt as a handy, model-

independent rule of thumb: if forecasts are trending colder, does that not suggest that the most

likely actual state is yet somewhat colder than the most recent forecast? Forecasters may also

note the amount of continuity of these lagged-average forecasts as a judge of the likely error in
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the most recent forecast. Lagged-average forecasts that have been consistent are judged to be

more accurate than ones that substantially differ from each other.

Because dprog/dt is often used as a rule of thumb regardless of the forecast model, it should

be generally valid and testable with most any model that can be run long enough to generate a

statistically significant sample. Ideally, the most appropriate data to test would be the ones fore-

casters are now using. Hence, if forecasters are applying dprog/dt to 12, 24, and 36-h forecasts

from the Eta model, this model should be tested. However, the Eta model is frequently modified

and improved at the National Centers for Environmental Prediction (NCEP), so a long history

of forecasts from the current version of this model is not available. Consequently, we will test

the validity is a forecast model where we do have a long time series of forecasts from the same

model, a reduced-resolution version of NCEP’s MRF model. If dprog/dt cannot be validated

here, its applicability to more complex models should be considered suspect until demonstrated

statistically.

The data to test dprog/dt was generated at the NOAA-CIRES Climate Diagnostics Cen-

ter (CDC) in our “re-forecasting” project (http://www.cdc.noaa.gov/�jsw/refcst). This project

was undertaken in part to study whether significant improvements to forecast skill are possi-

ble if a very long time series of forecasts are available from a frozen model. Using this large

training data set, systematic model errors can be detected, and current forecasts using the same

frozen model can be adjusted for these errors. We have thus far generated 23 years of medium-

range weather forecasts from a T-62 resolution version of the National Center for Environmen-

tal Prediction’s (NCEP’s) medium-range forecast (MRF) model (Kanamitsu 1989, Kanamitsu et

al. 1991, Caplan et al. 1997, Wu et al. 1997). A single control forecast has been run forward

for 2 weeks once every day from 0000 UTC initial conditions using the NCEP-NCAR reanal-

yses (Kalnay et al. 1996) from 1979 to 2001. Over the next year, we expect to complete a 15-

member ensemble of forecasts over the 23 years.

The rest of the note consists of a brief examination of the skill of this forecast data set, an

examination of how much improvement can be obtained through lagged-average regression ap-
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proaches, and an examination of the validity of the dprog/dt rules of thumb. We hope the reader

will see beyond the specifics of testing dprog/dt; the more important point is the value of careful

statistics in validating hypothesized rules of thumb.

2. RESULTS

Our data set will consist of 1, 2, and 3-day forecasts of 850 hPa temperature from January-

March 1979-2001. Sea-level pressure forecasts were also examined but will not be shown here;

the results were both qualitatively and qualitatively similar. NCEP-NCAR reanalyses were used

as verification data. For simplicity, regression corrections and the usefulness of dprog/dt was

evaluated at a limited set of locations in the U.S.. These locations were the grid points nearest

to Seattle, WA, Los Angeles, CA, Denver, CO, Minneapolis, MN, San Antonio, TX, Columbus,

OH, Tampa, FL, Cape Hatteras, NC, and Portland, ME. To minimize the direct effect of forecast

bias and the annual cycle upon the analysis, a 31-day running mean climatology of the analysis

state and the mean forecast state was computed for each of these locations using the full 23-year

data set. These running means were subtracted from the analyses and forecasts prior to the sub-

sequent examination.

a. Validity of extrapolating forecast trends

First consider the overall error statistics of these forecasts. Table 1 provides the root mean-

square (RMS) error characteristics of the forecasts at the nine locations as a function of lead

time.

As a baseline for evaluating the value of forecast trends, a simple univariate regression was

performed to predict the 850 hPa temperature provided from just the 24-h forecast temperature.

For this regression, a cross-validation approach was used (Wilks 1995). The regression constants

are separately calculated for each of the 23 years, using the remaining 22 years as training data.

Denote Tpred as the predicted 850 hPa temperature (deviation from observed climatology) and

T24 the 24-h forecast (deviation from forecast climatology). The regression equation was of the
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form

Tpred = �0 + �1 � T24 (1)

The RMS error of this univariate regression is also displayed in column 5 of Table 1. The errors

are consistently slightly lower than those from the 24-h forecast itself. On average, there was an

�0.07 K reduction in RMS error.

If there is value in the trend in lagged-average forecasts, inclusion of these trends ought to

significantly improve the accuracy of these forecasts. Accordingly, denote (T48 � T24) the trend

between 48 h and 24 h lagged average forecasts valid at the same time, and similarly for (T72 �

T48). A cross-validated multivariate linear regression was performed of the form

Tpred = �0 + �1 � T24 + �2 � (T48 � T24) + �3 � (T72 � T48): (2)

The RMS errors of this multivariate regression are also displayed in the last column of Table 1.

The inclusion of additional information on forecast trends made only a very small improvement

to the skill of the forecasts; on average, only �0.02 K less than the errors from the univariate

regression. If one examines the distribution of regression coefficients produced via the cross-

validation (not shown), the distribution of �2 and �3 typically overlapped zero, indicating little

confidence that the optimal values for these coefficients were significantly different from zero.

Examining a scatterplot of 48-24 h forecast trends and their relationship to the difference

between the 24 h forecast and the analyzed state, the reason for the limited value of extrapolat-

ing trends is more apparent. Figure 1 provides this scatterplot; the difference in temperatures

between 48 and 24-h forecasts valid at the same time is plotted along the x-axis, the difference

between 24-h forecasts and the verification along the y-axis. There was little relationship be-

tween the forecast trend and the 24-h forecast error, as noted by the correlation coefficients near

zero (plotted in the upper-left corner of each panel). The correlations were generally smaller yet

if the trend was evaluated between 72 h and 24 h, and the correlations were no larger if one ex-

amined the subset of cases where there was a consistent trend in the 72-48 and 48-24 h forecast

tendencies.
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b. Estimating forecast skill from consistency

Is the consistency of forecasts useful for determining the accuracy of the most recent fore-

cast? Figure 2 provides a scatterplot of the absolute difference between 48 and 24 h forecasts

(x-axis) and the mean absolute error (MAE) of the 24 h forecasts (y-axis). Ideally, the larger the

discrepancy between 48 and 24 h forecasts, the larger the typical MAE should be. Let F denote

the absolute difference between 48 and 24 h forecasts. On Fig. 2, MAE(F � 1), MAE(1 < F � 3),

and MAE(3 < F ) is also plotted, where the overbar denotes the average over all forecasts. Note

that there was only a small difference between the average MAEs of forecasts with large dis-

crepancies and small discrepancies; the discrepancy in short-term lagged-average forecasts was

not a very useful predictor of forecast skill.

3. CONCLUSIONS

Weather forecasters develop rules of thumb to aid themselves in improving upon the nu-

merical forecast guidance. Unfortunately, the human brain is often deceived into seeing pat-

terns where there may be none (Gilovich 1993). Hence, a rule of thumb ought to be statistically

validated before use, if this is possible. As an example of the potential problems with rules of

thumb, we examined the usefulness of short-term lagged-average forecasts, i.e., dprog/dt. Using

data from a reduced-resolution version of NCEP’s MRF model, dprog/dt was shown to have lit-

tle validity as a forecast rule of thumb. Temperature trends with this model should not be extrap-

olated, and there is only a little value in the amount of discrepancy in lagged average forecasts

for predicting the magnitude of forecast error.

Is this apparent lack of improvement a consequence of using this particular model? While

rules of thumb are often model-dependent, this particular rule seems to be applied across a va-

riety of models. Following this same reasoning, dprog/dt should be carefully validated in other

models rather than being used unquestioningly.

If not dprog/dt, then what? There are demonstrably valuable techniques for estimating fore-

cast uncertainty and improving the skill from a single deterministic forecast. One such technique
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is commonly referred to as ensemble forecasting (Toth and Kalnay 1993, 1997; Molteni et al.

1996; Houtekamer et al. 1996). There is a smaller body of literature on the usefulness of en-

sembles for shorter-range forecasts. See Brooks et al. (1992) for a motivation for short-range

ensemble forecasting and Hamill et al. (2000) for a literature review. Other recent synoptic eval-

uations of ensembles include Mullen and Buizza (2001, 2002), Wandishin et al. (2001), and

Grimit and Mass (2002). Though there are many challenging problems that need to be addressed

to improve these forecasts, such data sets should be more useful for evaluating the uncertainty of

shorter-range forecasts. Readers who may have used dprog/dt but are looking for a more theo-

retically justifiable alternative are encouraged to consider the information from these ensemble

studies and to examine the new short-range ensemble forecast guidance now being generated at

NCEP.
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FIGURE CAPTIONS

Figure 1. Temperature trends (dprog/dt) and forecast errors for various locations. Plotted on x-

axis in each panel are the 23 years � 90 days of 850 hPa temperature differences between

48-h and 24-h forecasts valid at the same time. On the y-axis are differences between the

24-h forecast and the verification. Correlation coefficient plotted in upper-left corner.

Figure 2. Mean absolute error (MAE) of 24-h 850 hPa temperature forecasts (y-axis) and their

relationship to the absolute difference between 48-h and 24-h temperature forecasts (x-axis,

forecasts valid at the same time). Horizontal lines denote the average MAE for cases when

the absolute difference was less than 1 C, between 1 and 3 C, and greater than 3 C.
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axis in each panel are the 23 years � 90 days of 850 hPa temperature differences between
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Figure 2. Mean absolute error (MAE) of 24-h 850 hPa temperature forecasts (y-axis) and their

relationship to the absolute difference between 48-h and 24-h temperature forecasts (x-axis,

forecasts valid at the same time). Horizontal lines denote the average MAE for cases when

the absolute difference was less than 1 C, between 1 and 3 C, and greater than 3 C.
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Table 1. 850 hPa RMS temperature errors (degrees C) for selected locations. First column de-

noted the location; columns 2, 3, and 4 denote the RMS errors of 24, 48, and 72 h forecasts,

respectively. Column 5 indicated the RMS error of a linear regression forecast with one pre-

dictor (24-h 850 hPa temperature), and column 6 the error of a multivariate linear regression

forecast with 3 predictors (24-h 850 hPa temperature, 48-24 h difference, and 72-48 h differ-

ence).

24-h RMSE 48-h RMSE 72-h RMSE Regr1 RMSE Regr3 RMSE

Seattle, WA 1.38 2.02 2.59 1.33 1.32

Denver, CO 2.37 3.05 3.83 2.07 2.06

Los Angeles, CA 1.28 1.82 2.31 1.23 1.21

Minneapolis, MN 1.57 2.66 3.75 1.52 1.50

Columbus, OH 1.38 2.38 3.41 1.36 1.34

San Antonio, TX 1.80 2.90 3.82 1.72 1.67

Portland, ME 1.58 2.52 3.67 1.55 1.51

Cape Hatteras, NC 1.41 2.26 3.50 1.38 1.37

Tampa, FL 1.30 1.93 2.66 1.24 1.22
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